
Empirical Software Engineering (2024) 29:83
https://doi.org/10.1007/s10664-024-10448-6

VulNet: Towards improving vulnerability management
in the Maven ecosystem

Zeyang Ma1 · Shouvick Mondal2 · Tse-Hsun (Peter) Chen1 · Haoxiang Zhang3 ·
Ahmed E. Hassan3

Accepted: 16 January 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Developers rely on software ecosystems such asMaven tomanage and reuse external libraries
(i.e., dependencies). Due to the complexity of the used dependencies, developers may face
challenges in choosing which library to use and whether they should upgrade or down-
grade a library. One important factor that affects this decision is the number of potential
vulnerabilities in a library and its dependencies. Therefore, state-of-the-art platforms such
as Maven Repository (MVN) and Open Source Insights (OSI) help developers in making
such a decision by presenting vulnerability information associated with every dependency.
In this paper, we first conduct an empirical study to understand how the two platforms,
MVN and OSI, present and categorize vulnerability information. We found that these two
platforms may either overestimate or underestimate the number of associated vulnerabilities
in a dependency, and they lack prioritization mechanisms on which dependencies are more
likely to cause an issue. Hence, we propose a tool named VulNet to address the limitations
we found in MVN and OSI. Through an evaluation of 19,886 versions of the top 200 popular
libraries, we find VulNet includes 90.5% and 65.8% of the dependencies that were omitted
by MVN and OSI, respectively. VulNet also helps reduce 27% of potentially unreachable
or less impactful vulnerabilities listed by OSI in test dependencies. Finally, our user study
with 24 participants gave VulNet an average rating of 4.5/5 in presenting and prioritizing
vulnerable dependencies, compared to 2.83 (MVN) and 3.14 (OSI).

Keywords Software vulnerability management · Software ecosystems · Empirical software
engineering

1 Introduction

Modern software often reuses functionality from other software libraries (i.e., dependencies)
to provide a full working system. Such reuses significantly increase developers’ productivity

Communicated by: Xin Peng

B Zeyang Ma
m_zeyang@encs.concordia.ca

Extended author information available on the last page of the article

123

/ Published online: 5 May 2024

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-024-10448-6&domain=pdf
http://orcid.org/0000-0002-0390-1547

Empirical Software Engineering (2024) 29:83

and improve software quality (Frakes and Kang 2005; Ruiz et al. 2012; Mojica et al. 2014;
Epperson et al. 2022). To facilitate software reuse, different communities have proposed
various software ecosystems. For Java projects, theMaven ecosystem plays an important role
of a software supply chain. For projects built with mvn (the Maven build system), developers
declare the required external libraries (i.e., dependencies) in the configuration file, namely
pom.xml. Maven then automatically downloads all the dependencies from Maven Central.

Although Maven provides great convenience to developers, there are also potential risks
related to the quality of the used dependencies. In particular, if a library contains vulnerabili-
ties (e.g., securityweaknesses), all the dependent softwaremay also become vulnerable (Kula
et al. 2018).According to Synopsis (Synopsys 2022; Lemos 2022), a software systemdepends
on an average of more than 500 open source libraries and components. Hence, it is difficult
to know if a used dependency has vulnerabilities, especially when these dependencies in turn
also depend on other dependencies. For example, in 2021, Apache Foundation revealed a
vulnerability in remote code execution (CVE-2021-44228) (Mitre 2022) in Log4j (Apache
2022a).

Since Log4j is a commonly-used logging library, the vulnerability has a potential impact
on hundreds or even thousands of libraries that useLog4j directly or indirectly. According to
theGoogle security blog (Google 2022a), they found that 35,863 of the available Java libraries
from Maven Central depend on the vulnerable Log4j. This means that more than 8% of all
packages on Maven Central have at least one version that is impacted by this vulnerability.
Among the 35,863 libraries, about 7,000 libraries have Log4j as a direct dependency. A
larger portion (80%) of the remaining libraries have Log4j as a transitive (also called
indirect) dependency, which means that developers need to carefully examine the complex
dependency graph to know whether their software is impacted by the vulnerability. Due to
the notorious vulnerability in Log4j and other popular open source libraries, developers are
nowmore aware of and, at the same time, concerned about vulnerabilities in dependencies. To
help developers understand and manage vulnerabilities in dependencies, there are existing
platforms that provide library information for developers, such as the Maven Repository
(MVN) (Repository 2022a) andGoogle’s Open Source Insights (OSI) (Google 2022b).MVN
indexes the central repository for the Maven ecosystem, which contains a comprehensive
collection of software libraries.MVNalso shows the dependency vulnerability data to provide
warnings to users who depend on Maven Central. In addition, OSI is a service developed
and hosted by Google to help developers better understand the structure, construction, and
security of open source software libraries. So, when developers are in need of deciding
whether to use a specific library or whether to upgrade to a specific version, platforms like
MVN and OSI can provide some insight and suggestions (Google 2022c). Given a library,
MVN and OSI show the potential vulnerabilities (collected from CVE) that come from the
library itself or its dependencies to help developersmake their choices andminimize potential
vulnerabilities in the used dependencies.

Prior studies (Shen et al. 2011; Johnson et al. 2013; Chen et al. 2016; Barik 2016; Lipp et al.
2022;Nachtigall et al. 2022) found that providing vulnerability information in an effective and
prioritized fashion can significantly improve the usefulness of vulnerability reporting tools.
Hence, in this paper, we first investigate how the two platforms, MVN and OSI, present
and categorize vulnerability information in dependencies. We study how the two platforms
present and categorize the vulnerabilities by comparing the top 200 most popular libraries
on both platforms. We found that MVN may underestimate the number of dependencies
and their vulnerabilities because they only list direct dependencies and their vulnerabilities
while transitive dependencies are missing. On the other hand, OSI may have overestimated
the number of dependencies and their vulnerabilities. Although OSI does not only calculate

123

83 Page 2 of 25

Empirical Software Engineering (2024) 29:83

direct dependencies, but also transitive dependencies and inheritance dependencies, the mix
of dependencies and putting them in one list may include some unreachable dependencies
and their vulnerabilities. We also found that both platforms lack proper mechanisms that
would help developers prioritize the vulnerability investigation and resolution effort in the
software supply chain.

To address the limitations, we designed a vulnerability management approach VulNet,
to help developers address the above-mentioned limitations. VulNet categorizes the depen-
dencies based on their types, provides a risk level for different dependencies, and ranks the
dependencies based on the vulnerability severity. Finally, we compare VulNet withMVN and
OSI on how the three platforms organize and present the dependencies and the associated
vulnerabilities. Through a user study with 24 practitioners, we find that VulNet receives a
much higher rating compared to MVN and OSI on dependency vulnerability management.

The main contributions in this paper are as follows:

– We conduct an empirical study on two state-of-the-art vulnerability management plat-
forms (i.e., MVN and OSI) to investigate how they furnish information on vulnerable
dependencies. We identify that MVN underestimates the number of dependencies and
vulnerabilities, resulting in missing information on some dependencies and vulnerabili-
ties. OSI overestimates the number of dependencies and vulnerabilities, and lists some
vulnerabilities with a lower impact level. Additionally, there is room for improvement in
their classification and prioritization of results.

– We propose a tool, VulNet, which assists developers in navigating and prioritizing vul-
nerable dependencies in the Maven ecosystem.

– Through an evaluation of 19,886 versions of the top 200 popular libraries, we find that
VulNet includes 90.5% and 65.8% of the dependencies and associated vulnerabilities
ignored by MVN and OSI, respectively. VulNet also help reduces 27% of potentially
unreachable vulnerabilities listed by OSI.

– In our user study with 24 practitioners, we find that VulNet received an overall rating of
4.5 out of 5 compared to MVN (2.83) and OSI (3.14). Practitioners also give VulNet’s
vulnerability prioritization mechanisms an average of 4.58 and gave positive feedback
on the usefulness of VulNet.

– We made our experimental data publicly available (Ma et al. 2022).

In short, our study uncovers the limitations of the currentMaven vulnerabilitymanagement
platforms and discusses the solutions that we designed in VulNet. Our study takes the first
step to assisting practitioners with vulnerable dependencymanagement. Our study also sheds
light on future research directions in improving software ecosystems.

Paper Organization Section 2 discusses the background of the Maven ecosystem and
vulnerability management, and related work. Section 3 presents the limitations and differ-
ences in state-of-the-art vulnerability management platforms. Section 4 presents the design
of VulNet. Section 5 evaluates VulNet. Section 6 discusses the implications of our study.
Section 7 discusses threats to validity. Finally, Section 8 concludes the paper.

2 Background and RelatedWork

In this section, we present the relevant background for vulnerability management in the
Maven ecosystem and related work.

123

Page 3 of 25 83

Empirical Software Engineering (2024) 29:83

2.1 TheMaven Ecosystem andVulnerability Management

In Java, the Maven build system is primarily used to help developers compile, test, and build
software. Developers can easily reuse third-party libraries by declaring the dependencies (i.e.,
external libraries) inMaven’s configuration file (i.e.,pom.xml).Mavenwould automatically
download the dependencies and all of their upstream dependencies to complete compiling
the project.

This convenience also comes with some potential risks. Because of the complexity of
dependency graphs, the network of upstream dependencies is sometimes complex and dif-
ficult to manage (Imtiaz et al. 2021). When some of these upstream dependencies have
vulnerabilities, the vulnerabilitiesmay affect other downstreamdependencies. To assist devel-
opers with understanding and managing vulnerabilities in library dependencies, the library
information listing platform for Maven (i.e., MVN), which contains libraries from multiple
repositories, now provides lists of possible vulnerabilities that are associated with a library.
Similarly, Google created OSI, which provides library vulnerability information for Maven,
NPM, PyPi, and some other ecosystems.

Figure 1 shows the vulnerability information for the Maven library logback-core:
1.2.4-groovyless on the two vulnerability management platforms. The two platforms
both list the vulnerabilities associated with the library, where MVN lists the associ-
ated CVE ID (e.g., CVE-2021-42550), and OSI lists the alias ID for the CVE (e.g.,
GHSA-668q-qrv7-99fm) and the title of the advisory report. Both platforms divide
vulnerabilities into two parts: from the library itself and from dependencies. Showing the
vulnerability information helps developers manage the vulnerabilities in the used depen-
dencies. Developers can then decide whether to use a certain dependency or whether to
upgrade/downgrade to a certain version (e.g., with less vulnerabilities).

Even though MVN and OSI attempt to provide vulnerability information for the libraries
and their dependencies, the complex nature of software dependency makes vulnerability
management even more complicated. The Maven build system (mvn) supports a wide range
of dependency configurations, whichwould affect how a vulnerabilitymay propagate through
the dependency graph. Below, we summarize the types and scope of dependencies in the
Maven build system.

Direct and Transitive Dependencies Software upstream dependencies (i.e., external
libraries) can be classified into two categories: direct and transitive. For a library, a depen-
dency (of depth one) that is defined directly in its configuration file (pom.xml) is a direct
dependency. The other non-immediate upstream dependencies (of depth more than one)
introduced by direct dependencies are transitive dependencies. For example, consider the
dependency: LibA → LibB → LibC.LibC is a transitive dependency of LibA, and
LibB is a direct dependency of LibA. Vulnerabilities in both direct and transitive may have
an impact on a library (Düsing and Hermann 2022), and due to the scale and complexity
of such a dependency graph, a library may have tens or even hundreds of dependencies
(Louridas et al. 2008; Harrand et al. 2022). Therefore, it is important to provide developers
with information on how a vulnerability propagates through the dependency graph.

Dependency Scope Depending on how a dependency is used, its scope can be further
divided into four types (Apache 2022b): compile, runtime, provided, and test. A compile
dependency means that the dependent library is required during compilation and is available
in the classpath of the library. A runtime dependency indicates that the library would be
used during the execution. For instance, a JDBC driver (Oracle 2022) could be a runtime

123

83 Page 4 of 25

Empirical Software Engineering (2024) 29:83

Fig. 1 An example of the listed CVEs for the library ch.qos.logback: logback-core:
1.2.4-groovyless on MVN and OSI

dependency; while it is necessary at runtime for making database connections, the code can
be compiled without the JDBC driver (it is an external library that is needed at runtime).
A provided dependency is similar to a compile dependency but is not explicitly included in
the classpath. Rather, developers need to include and enable provided dependencies in the
run-time environment (e.g., so developers have the flexibility in choosing the versions of the
library that they want to use). A test dependency is used only for compiling and executing
the test cases. Besides the aforementioned types, a developer may mark a dependency as
optional (excluded by default) by specifying the <optional> tag in the pom.xml file
associated with the code. Such optional dependencies may only be needed if developers are
required to use certain features provided by the library. For example, given the dependency
LibA→LibB→LibC<optional>,LibAmay still configure itspom.xml to include
LibC if LibA requires the features related to the dependency. Additionally, the dependency
scope might be changed during the transit in the dependency chain. For example, consider
the dependency: LibA → LibB <test> → LibC <compile>. In this case, LibC should
be considered a test dependency for LibA, because LibC is only used by LibA’s test

123

Page 5 of 25 83

Empirical Software Engineering (2024) 29:83

dependency: LibB. Since test dependencies are excluded from the exported binaries by
default, vulnerabilities in test dependencies are less likely to cause issues.

Dependency Management Maven introduces dependency management to help refactor
complex dependencies. Specifically, developers can define parent and child libraries in a
Maven project. The child libraries can inherit the dependencies from the parent library for
more organized dependency management.

2.2 Challenges in PresentingVulnerability Information

Different dependency types and scopes determine how a vulnerabilitymay propagate through
the dependency graph and affect the overall project. For instance, the testScratch
project in Fig. 2 is affected, when a vulnerability is discovered in the transitive dependency
xmlParserAPIs. This vulnerability propagates to the upper-level junit-addons, then
propagates to dbunit, and finally to testScratch. Hence, this propagation path poten-
tially makes the project vulnerable to security flaws. However, if we consider the dependency
scope, this effect may sometimes be spurious. For example, if we find a vulnerability in
dbunit’s downstream dependency junit, and junit is declared as a test dependency of
dbunit, the vulnerability does not affect the entire project during the compilation scope as
test dependencies (by default) are not included in the final binary file.

To the best of our knowledge, there has been no systematic study on how these vulnerabil-
ity management platforms categorize and present library vulnerability information. Due to
the complex nature of vulnerability management in a library’s dependencies, how to present
and prioritize vulnerabilities have a direct impact on helping developers make decisions on
choosing libraries and selecting appropriate versions. As found in prior studies (Shen et al.
2011; Johnson et al. 2013; Chen et al. 2016; Barik 2016; Lipp et al. 2022; Nachtigall et al.
2022), the adoption of static security testing tools is highly related to how the results are
presented to developers. Similarly, we believe that a systematic and better organization of
the vulnerability information helps developers with dependency vulnerability management.
Hence, our goal is to study the current vulnerability management systems, understand their
limitations, and propose potentially better vulnerability management for the Maven ecosys-
tem.

Fig. 2 How a vulnerability propagates in a dependency chain (of depth three) for the testScratch project

123

83 Page 6 of 25

Empirical Software Engineering (2024) 29:83

2.3 RelatedWork

We present related work in two directions: vulnerability management in open source ecosys-
tems and reporting vulnerability information to users.

Vulnerability Management in Open Source Ecosystems Vulnerable dependencies are
a major problem in today’s open source software ecosystems (GitHub 2020; Latendresse et
al. 2022; Decan et al. 2018; Croft et al. 2021; Pashchenko et al. 2018; Zerouali et al. 2022;
Alfadel et al. 2021, 2020). GitHub reveals that active repositories with a supported package
ecosystem have a 59% chance of getting a security alert in the next 12months (GitHub 2020).
A prior study by Prana et al. (2021) on 150 (out of 462,182) Java projects reports that themean
percentage of dependencies with vulnerability is 12.3%. Gkortzis et al. (2021) empirically
investigated 1,244 open source Java projects to explore and discuss the distribution of security
vulnerabilities. The results show that larger projects are associated with an increase in the
number of potential vulnerabilities in both native and reused code. Massacci and Pashchenko
(2021) show that libraries with high leverage (with more reused code) have a 1.6× higher
probability of being vulnerable in comparison to the librarieswith lower leverage. Latendresse
et al. (2022) studied 100 JavaScript projects using NPM and indicate that less than 1% of the
installed dependencies are released to production. However, our work focuses exclusively
on Java projects in the Maven ecosystem. We compare two state-of-the-art vulnerability
management platforms in this ecosystem, identify the limitations in organizing vulnerability
information, and attempt to guide developers’ mitigation efforts by enriching vulnerability
information using a wider categorization of dependencies and prioritization.

Reporting Vulnerability Information to Users Vulnerability reports help developers
navigate potential vulnerabilities and take needed corrective actions. However, unorganized
reports may cause additional investigation overhead or even distrust in the result. Some pre-
vious studies attempted to improve the reporting of vulnerability detection tools and provide
more effective information (Johnson et al. 2013; Imtiaz et al. 2021; Farris et al. 2018; Smith
et al. 2015). Imtiaz et al. (2021) performed a comparative study of nine static security testing
tools and reported that there are significant differences in the analysis report they generate.
They recommend the usage of multiple tools to minimize false positives and vulnerability
misses. Farris et al. (2018) provided a vulnerability prioritization tool VULCON, which uses
a mixed-integer multi-objective optimization algorithm to prioritize vulnerabilities. Johnson
et al. (2013) conducted interviews with 20 developers and investigated why developers are
not widely using vulnerability detection tools and possible improvements. One of the reasons
they found was that the displayed warnings were not informative enough. Smith et al. (2015)
conducted a user study on how users were satisfied with the report of vulnerability detection
tools and found that such tools sometimes provide an incomplete picture of the problem that
fails to help developers locate the root causes. In addition to MVN and OSI, there are other
dependency management platforms such as OSSIndex (Sonatype 2022), Snyk (Snyk 2022)
and Libraries.io (Libraries.io 2022). We observed that OSSIndex excludes vulnerabilities
from dependencies and only focuses on vulnerabilities from the library itself. Libraries.io
(although covering a total of 32 packagemanagers) does not list any vulnerability information.
In the presence of multiple vulnerabilities, Snyk lists vulnerabilities in no particular order
(no prioritization), while VulNet provides prioritization of the vulnerabilities in a library’s
dependencies. There are more platforms that provide dependencymanagement in practice. In
this paper, we focus only on two of these platforms (MVN and OSI) due to their rich features.
In this paper, we first empirically uncover the issues in current vulnerability management
platforms. Based on our findings, we propose VulNet to provide a better reporting of vulner-
abilities from upstream dependencies, and provide a more informative vulnerability listing.

123

Page 7 of 25 83

Empirical Software Engineering (2024) 29:83

We conducted a user study to collect users’ perceptions of the information we provided in
the report. In RQ3, our approach was validated and rated 4.50 out of 5 by the participants.

3 An Empirical Study on Vulnerability Management in the Java
Ecosystem

In this section, we manually analyze how MVN and OSI present vulnerabilities from
dependencies in five dimensions. Our goals are to understand how the two vulnerability
management platforms present the information, and whether there is room for improvement.

3.1 StudyingVulnerability Management in MVN and OSI

Manual Study Setup We conducted a study on the top 200 most popular libraries in the
Maven Repository (Repository 2022b). Our study was conducted in November 2021, so the
popularity is based on the usage by other libraries on the Maven Repository at that time. For
each library, we categorize how the information is presented on MVN and OSI, and whether
there is any difference. Our qualitative analysis involved the following three phases:

– Phase I: Select the top 200 most popular libraries in the Maven repository (Repository
2022b). For each library, we studied the version released closest to the end of 2019 to
ensure the libraries would have enough time to receive vulnerability reports.

– Phase II: For each library, we compare the differences in its vulnerability information
between the two platforms.We analyze thepom.xmlfiles to study how the dependencies
are configured. We also recursively analyze pom.xml for all the transitive dependencies
if the platforms show that they may be affected by vulnerabilities.

– Phase III: We study the differences in the listed vulnerability between MVN and OSI.
In particular, we study how the two platforms list the vulnerability and the relationship
between the library and the vulnerable dependency to understand the reasons for the
difference.

Below, we summarize howMVN and OSI present the vulnerability information along five
dimensions: (i) transitive dependency, (ii) inherited dependency, (iii) dependency scope, (iv)
prioritizing vulnerable dependencies, and (v) number of libraries included. For a detailed
comparison of these dimensions, refer to Table 1. Among these, two dimensions are partic-
ularly pivotal:

Dependency Scope The term refers to the capability of a library information listing
platform to enumerate the dependency scope information when delineating the dependency
data of a library. The dependencies of a library could contain vulnerabilities that might be
propagated to the library itself. When a library dependency is identified, not only the fact
that there is a dependency relationship, but also the dependency scope (how the dependency
is concretely used by the library) could affect how the vulnerability could impact the library.
Therefore, we wish to study the dependency scope of a vulnerability to assess its impact, for
example, whether the vulnerability would be introduced if a dependency is concretely used
in the compilation or testing phase.

Number ofLibraries IncludedThis dimension reflects the count of libraries incorporated
within the platform. Library dependencies are counted by one of the two platformswe studied.
We cross-check such numbers to understand any discrepancy of the number, that is, missing

123

83 Page 8 of 25

Empirical Software Engineering (2024) 29:83

Table 1 Acomparison betweenMVNandOSI along the five studied dimensions and the practical implications

Dimension Maven repository Open source insight Practical implications

Transitive dependencies Considers only direct
dependencies.

Considers direct and
transitive dependencies,
excluding transitive
optional ones.

Both platforms might
not display all vulner-
abilities from transitive
dependencies.

Inherited dependency Not considered. Treats as direct depen-
dencies.

MVN might overlook
vulnerabilities from
inherited dependencies.

Dependency scope Classifies dependencies
as compile v.s. provided
or runtime v.s. test.

Not supported. OSI’s lack of scope
distinction might cause
false positives or inaccu-
rate prioritization.

Prioritizing vulnerable
dependencies

No prioritization. Lists vulnerabilitieswith
severity scores, but does
not show which depen-
dencies contain the vul-
nerabilities.

Absence of prioritiza-
tion could hinder devel-
opers’ tool adoption due
to inefficiency in vulner-
ability management.

Num. of libraries
included

Serves as the primary
Maven ecosystem repos-
itory, hosting an exten-
sive library list.

Omits some libraries.
16 out of 200 stud-
ied libraries were not
included.

Incomplete library data
on OSI might constrain
developers in analyzing
dependency vulnerabili-
ties.

or redundant library dependencies. The incorrect number of library dependencies could lead
to missing or false alarm reports of vulnerabilities.

Results.WeFind that 115/200 (57.5%) of the StudiedLibraries ContainOne orMore
Vulnerabilities whenConsideringBoth the Library itself and its DependenciesHowever,
when only considering vulnerabilities from the library itself, and disregarding vulnerabilities
fromdependencies, the ratio significantly drops to 36/200 (18%). This underscores the pivotal
role dependencies play in the overall vulnerability landscape of a library. We find that there
are several differences in how the two platforms present vulnerability information, especially
on the vulnerabilities introduced by the dependencies. Below, we discuss the differences and
implications of each dimension.

BothMVNandOSIConsiderVulnerabilities inDirect Dependencies, ButMVNDoes
not Consider Vulnerabilities from Transitive Dependencies Vulnerabilities in transitive
dependencies may still cause security risks (Alqahtani et al. 2016; Pashchenko et al. 2020).
For example, Google’s report (Google 2022a) states that more than 80% of the software
affected by the notorious vulnerability CVE-2021-44228 from Log4j did not use Log4j
directly, but depended on it transitively. While MVN provides valuable information regard-
ing vulnerabilities in direct dependencies, our findings indicate a limitation in its capacity to
effectively track and display vulnerabilities stemming from transitive dependencies. Specifi-
cally, MVN is not able to identify vulnerabilities introduced through transitive dependencies
in 31% of the studied vulnerable libraries, equating to 36 out of the 115 libraries that contain
vulnerabilities. Developers should be aware that when using MVN to review the vulnerabil-
ity information associated with a library, they may miss important vulnerabilities, especially
coming from the transitive dependencies of a library.

123

Page 9 of 25 83

Empirical Software Engineering (2024) 29:83

MVNDoes not Consider Inheritance in DependencyManagement, Thus Developers
May not be Aware of Those Vulnerable Dependencies Inherited from Parent Libraries
TheMaven build system offers an inheritancemechanism in dependencymanagement, where
a library can inherit the configurations defined in the pom.xml of a parent library. As an
example, the excerptedMaven configuration below is from the librarylogback-classic,
which uses the <parent> tag to inherit dependencies from the 1.2.4-groovyless
version of the logback-parent library. All the configuration information (e.g., version
name, license, dependencies) from the parent library is inherited by thelogback-classic
library.

<parent>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-parent</artifactId>
<version>1.2.4-groovyless</version>

</parent>
<artifactId>logback-classic</artifactId>
<packaging>jar</packaging>
<name>Logback Classic Module</name>
<description>logback-classic module</description>

Therefore, a library may become vulnerable if there is a vulnerability in any of its inherited
dependencies. In total, we find that 29/115 (25%) of the vulnerable libraries may have vulner-
abilities from inherited dependencies. However,whileOSI does consider such vulnerabilities,
MVN does not.

OSI Does not Categorize the Dependency Scope nor Distinguish Vulnerabilities in
TestDependencies.OSIAlsoDoesnotConsiderTransitiveOptionalDependenciesWhen
listing library dependencies and vulnerabilities, MVN takes into account various depen-
dency scopes (i.e., compile, runtime, provided, and test). Providing the dependency scope
of vulnerable dependencies allows developers to more accurately understand the types of
dependencies and prioritize the vulnerability accordingly. In some cases, developers may
use<optional> dependencies when these dependencies are only needed for certain fea-
tures to save space and memory (Maven 2022). However, such optional dependencies can
be transitive. Therefore, it is important to inform developers of possible vulnerabilities from
such optional dependencies in case developers need to enable the feature. However, OSI only
provides a list of dependencies and does not differentiate the dependency scope, which may
cause false positives and challenges in prioritizing vulnerabilities.

Both OSI and MVN Lack Mechanisms to Prioritize Vulnerable Dependencies Prior
studies (Farris et al. 2018; Liu et al. 2012; Huang et al. 2013; Le et al. 2022; Jung et al.
2022) found that although it is important to show developers all the potential vulnerabilities,
a lack of prioritization mechanisms may cause distrust and prevent developers from adopting
the tool. As shown in Fig. 1, OSI tries to show the severity score of each vulnerability to
assist developers with prioritization. However, OSI is listing every individual vulnerability
equally regardless of the dependency relationship, while in reality, multiple vulnerabilities
may be associated with one dependency. Hence, having a prioritization mechanism based on
dependency may help developers decide which dependency (e.g., dependency with the most
vulnerabilities) they should update/replace/fix when trying to resolve vulnerabilities.

Although OSI shows potential vulnerabilities from transitive dependencies, we find that
it does not provide any other information to help developers prioritize their investigation or
fixing efforts. Since the number of transitive dependencies grows exponentially, a librarymay
have hundreds or even thousands of transitive dependencies, and the depth of dependencies

123

83 Page 10 of 25

Empirical Software Engineering (2024) 29:83

is often large (e.g., more than three) (Liu et al. 2022; Valiev et al. 2018; Decan and Mens
2019). Such complex dependency relationships make it difficult for developers to understand
the impact of a vulnerability (LaToza and Myers 2010; Aloraini 2020).

The List of Libraries is Incomplete on OSI MVN uses the central repository for the
Maven build system, which contains a comprehensive list of libraries. However, we find
that this may not be the case for OSI. Among the 200 studied libraries, 16 of them (8%)
are not available on OSI. For example, Renjin (2022), which is an implementation of the R
language on Java Virtual Machine, is not available on OSI. Renjin is one of the top 200 most
popular libraries on MVN, but itself and all its subordinate libraries are not available on OSI.
Since Google Open Source Insight is an experimental project with active development, the
analyzed libraries are likely to be non-exhaustive. For these missing libraries, developers can
only rely on MVN for vulnerability information.

3.2 Limitations of Current Vulnerability Management Platforms

Below, we summarize the limitations of the current vulnerability management platforms that
we manually uncovered:

Limitation 1: Both Platforms do not Consider all Dependency Types and Scopes
Library dependency graphs can be large and complex (Louridas et al. 2008;Decan et al. 2016).
For the Maven build system, there are various dependency scopes, transitive dependencies,
optional dependencies, etc. However, we find that both MVN and OSI miss some types of
dependencies (e.g., MVN does not consider inherited and transitive dependencies, and OSI
does not distinguish between test and other types of dependencies). Hence, MVN and OSI
provide an incomplete view of the vulnerabilities due to missing dependencies.

Limitation 2: There is a Lack of Coherent and Consistent Presentation of Vulner-
abilities in Dependencies The two platforms present the dependency and vulnerability
information differently. For example, MVN shows the dependency scope (e.g., compile or
runtime), while OSI only shows the dependencies as direct or transitive. Additionally, some
libraries are not included by OSI. In short, it would be important to provide developers with
a unified presentation of vulnerabilities for better consistency. The consistency would help
developers to get accurate library information more clearly and easily.

Limitation 3: Both MVN and OSI Lack Proper Mechanisms that Help Developers
Prioritize the Effort to Investigate and Resolve Vulnerable Dependencies Although both
MVN and OSI provide some prioritization mechanisms, we find that such mechanisms are
often insufficient. For example, MVN does not show the details of a vulnerability (e.g.,
severity score), and OSI does not show which dependencies are more vulnerable. In addi-
tion, while OSI shows transitive dependencies, some dependencies may have a long chain
length in the dependency graph, which makes the associated vulnerabilities less likely to be
reachable at run time (LaToza and Myers 2010; Aloraini 2020). In the next section, we dis-
cuss the design of our vulnerability management approach to address the above-mentioned
limitations.

4 VulNet: AMore Informed Vulnerability Management for the Java
Ecosystem

Prior studies (Shen et al. 2011; Johnson et al. 2013; Chen et al. 2016; Barik 2016; Lipp et al.
2022; Nachtigall et al. 2022) found that the adoption of static security testing tools is highly

123

Page 11 of 25 83

Empirical Software Engineering (2024) 29:83

related to how the results are presented to developers. Similarly, we believe that a systematic
and better organization of the vulnerability information helps developers with dependency
vulnerability management. In this section, we present the design of VulNet, which provides
more organized and finer-grained vulnerability management in a library’s dependencies.

Based on our empirical findings and the uncovered limitations of MVN and OSI in
Section 3, we follow the requirements described below when designing VulNet:

– REQ1: VulNet should categorize the dependencies based on their properties and
scopes (to address Limitations 1, and 2). To assist developers in understanding the used
dependencies and the associated vulnerabilities, VulNet should categorize the depen-
dencies and the associated vulnerabilities based on their scope, and provide a unified
dependency information presentation.

– REQ2: VulNet should provide amechanism to help developers prioritize vulnerable
dependencies (to address Limitation 3). To assist developers in prioritizing the depen-
dencies, VulNet should provide various information, such as the overall vulnerability
severity, depth of the dependency, and the prioritization of dependency scopes.

Below, we discuss the design of VulNet that fulfills the above-mentioned requirements.

4.1 REQ1: Categorizing the Dependencies Based on their Properties and Scopes

Including all Dependency Types and Scopes Since dependency types and scopes have a
direct effect on how a vulnerability propagates through the dependency graph, it is important
to include all dependency types and scopes. Based on our findings in Section 3, we combine
the dependency types and scopes provided by both MVN and OSI. VulNet includes all the
dependency scopes: compile, runtime, provided, test, optional, and inherited dependencies
fromparent libraries.VulNet also lists if a dependency is of depth one (i.e., direct dependency)
or more than one (i.e., transitive dependency).
Categorizing the Dependencies based on Dependency Scope Since different dependency
scopes pose different risks from vulnerabilities, we categorize the dependencies based on the
scopes (e.g., compile vs test). For example, developers can use VulNet to quickly identify all
the test dependencies, where vulnerabilities in such dependencies may have a lower risk.

4.2 REQ2: ProvidingMechanisms to Help Developers Prioritize Vulnerable
Dependencies

Provide a Priority Ranking for the Dependencies Based on Scopes and Associated Vul-
nerabilities To assist developers with prioritizing the fixing and investigation effort for
vulnerable dependencies, we propose a ranking mechanism for the dependency scopes. The
ranking is meant to provide a recommendation and we provide a rationale behind the rank-
ing decision. Prior studies found that providing the decision-making process help improve
developers’ trust in tool adoption (Falessi et al. 2011; Saaty 1994). We rank direct depen-
dencies as critical (they are directly used by a library), transitive dependencies as high,
optional transitive optional dependencies as medium (they need to be enabled by developers
explicitly), and test dependencies as low. Moreover, we show how many vulnerabilities are
associated with one dependency, as some dependencies may have one and some may have
tens of associated vulnerabilities. Hence, developers can decide which dependencies they
should first upgrade or fix based on the number of associated vulnerabilities and dependency
scope.

123

83 Page 12 of 25

Empirical Software Engineering (2024) 29:83

Ranking the Vulnerabilities Based on Severity In addition to showing the number of
vulnerabilities associated with one dependency, we also list the severity scores for each
vulnerability (First 2022; Liu et al. 2012). NVDwebsite provides the Common Vulnerability
Scoring System (CVSS) to rank the severity of a vulnerability. CVSS ranges from 1 to 10 (the
highest severity). For every vulnerability, we retrieve the severity score from the CVEwebsite
and rank the dependencies based on the highest score of the associated vulnerabilities.
Ranking Transitive Dependencies Based on the Dependency Depth Prior studies found
that transitive dependencies with a larger depth are more likely to be unused (i.e.,
bloated) (Soto-Valero et al. 2021; Latendresse et al. 2022). In addition, in a large systemwhere
there are many dependencies, the depth of the dependency graph can be very large. Inves-
tigating the impact of the vulnerabilities associated with transitive dependencies in a large
depth can be challenging and time-consuming. Therefore, VulNet provides the dependency
depth information for every transitive dependency to help developers prioritize investigation
efforts.

We implement VulNet as a web platform based on Python. We implement a web crawler
to collect information about the dependencies and vulnerabilities for every version of the top
200most popular libraries and all their upstream dependencies. The crawler analyzes both the
Maven repository and CVE website to collect both the library and vulnerability information.
We analyze both MVN and pom.xml files to get the dependencies. This is the result of
traversing the dependency graph. We consider this dependency graph as the Ground Truth.
VulNet builds the same dependency graph based on the ground truth to capture all possible
vulnerabilities at themanifest level (based on thepom.xmlfile). In total, we collected 19,886
versions of the top 200 libraries and a total of 623,620 dependencies for all the versions of
these 200 libraries. Note that our crawler can be easily extended to retrieve the information
for other libraries. We store the library, its dependencies, and vulnerability information in a
database. We use a triplet (GroupI D, Arti f act I D, Version) to uniquely identify a Maven
library and represent the dependencies as a graph. Therefore, by doing a search, we are able
to identify all the dependencies of a given library. Our processed data is available online (Ma
et al. 2022).

A crucial feature of our tool is its ability to classify vulnerabilities introduced by depen-
dencies. We achieve this by analyzing the specific usage of these dependencies. This analysis
allows us to prioritize the vulnerability processing of the library based on the classification.
By understanding the different usages of dependencies, VulNet can provide a comprehensive
display of all vulnerabilities in the library and sort them effectively.

Figure 3 shows an excerpt screenshot of VulNet for the library spark-core_2.11:1.
2.2 . VulNet groups the dependencies based on the scope (e.g., direct compile) and the
scope’s priority (e.g., critical). VulNet further shows the vulnerabilities and their severity
scores associated with each dependency. For example, Log4j 1.2.17 has four vulnera-
bilities, where two of which have a severity score of 9.8. Hence, developers can quickly
identify the dependencies that have more severity and propose a solution (e.g., replace
or upgrade Log4j). VulNet also provides the depth of the dependencies. For example,
jackson-mapper-asl has a depth of three. Developers can consider the transitivity
depth information and prioritize their effort when investigating and resolving vulnerability
dependencies. The dependencies are sorted based on the number of vulnerabilities, the high-
est severity score, and the depth. Developers can also unfold the information layout (HTML
table) to examine the remaining dependencies easily.

123

Page 13 of 25 83

Empirical Software Engineering (2024) 29:83

Fig. 3 A screenshot of VulNet for library spark-core_2.11:1.2.2

5 Evaluation of VulNet

RQ1: HowDoes the Dependency Categorization Provided byVulNet Compare
Against State-of-the-Art Vulnerability Management Platforms?

Motivation Based on the issues that we uncovered in Section 3, we proposed VulNet, which
aims to provide more organized vulnerability management for library dependencies. In this
RQ, we compare the distribution and hierarchical categorization of the library dependencies
and the associated vulnerabilities acrossMVN,OSI, andVulNet. The results provide an initial
insight into how each platform presents the dependencies and the associated vulnerabilities.
Approach We conduct our study on all the versions of the top 200 libraries on the Maven
repository. We collected the data in November 2021. In total, there are 19,886 versions for
these 200 libraries. We analyze the direct and transitive dependencies for all the libraries.
As we discussed in Sections 2 and 3, different dependency types and scopes may have
different implications on how a vulnerability propagates through the dependencies (e.g.,
vulnerabilities from the transitive dependencies of a test dependency should not have a real
impact). Therefore, in this RQ, we first illustrate how the three vulnerability management
platforms present the hierarchical categorization of library dependencies. We categorize the
dependencies based on the scope and calculate the average number of dependencies for each
library. We divide the dependencies into two broad categories: direct, and transitive, and list
the number of dependencies that belong to each scope. We also manually verify the number
of dependencies reported by VulNet on 100 randomly selected libraries. Finally, we study
how the vulnerabilities are distributed among the different dependency scopes to understand
the prevalence of vulnerabilities in the software supply chain context.
Results. OSI and MVN Exclude an Average of 65.8% and 90.5% of the Dependencies
per Library, Respectively Table 2 shows a hierarchical view of the analyzed dependency
scopes. We show the average statistics across all versions of these 200 libraries. OSI would
list the required dependencies and test dependencies of the transitive dependencies, but OSI
does not categorize transitive dependencies by the dependency scope. In our hierarchical
view, we link the transitive dependencies with dotted lines. Because MVN does not consider
transitive dependencies and OSI does not consider transitive optional dependencies, both

123

83 Page 14 of 25

Empirical Software Engineering (2024) 29:83

Table 2 The average (mean) number of dependencies and their distribution for all the versions of the 200
analyzed libraries across different platforms

Dependency scopes with an immediate negative impact are shown in Bold font, and those that may or may not
have an impact (i.e., optional) are shown in Italics. Even though OSI does not distinguish dependency types,
we use dashed lines to show the distribution of transitive dependencies for comparison purposes

MVN and OSI would only include 7.40 and 26.61 dependencies on average, respectively.
In contrast, VulNet introduces a more comprehensive dependency graph, with an average
of 77.85 dependencies per library. Due to the exclusion of inherited dependencies, MVN
excludes an average of 0.23 direct dependencies per library, while OSI and VulNet show
the same average number of direct dependencies (i.e., 7.63). Additionally, our manual study
on the 100 randomly selected libraries shows that the number of dependencies reported by
VulNet matches the actual number of dependencies, which further demonstrates the high
accuracy of VulNet.

Even though VulNet includes more dependencies, the categorization provided by Vul-
Net helps break down the dependency based on the scope. For example, developers can be
informed that a library has an average of 47.49 optional transitive dependencies. Vulner-
abilities in optional dependencies may still have an effect if developers choose to enable
the optional features. Therefore, VulNet lists optional transitive dependencies separately and
allows developers to decide whether they need these optional features or not. Moreover,
VulNet helps developers distinguish test and source dependencies, as test dependencies are
excluded in the final executable and binary by default (Apache 2022c).

As shown in Table 2, a library has an average of 1.76 test dependencies and 7.11 transitive
test dependencies. However, when using OSI, developers would only see there are an average
of 7.63 direct and 18.98 transitive dependencies, andwould not be able to distinguish between
test and other types of dependencies, which could play a role in analyzing the impact of
vulnerability especially those from library dependencies.
On Average, 27% of the Vulnerabilities Listed by OSI in a Library May be Invalid and
MVN Excludes an Average of 21.18 Potential Vulnerabilities Table 3 shows the average
number of potential vulnerabilities associated with each dependency scope.

For each library studied through our tool, we collect the vulnerabilities that each library
itself has been exposed to from the “Vulnerabilities from the library itself” section of Maven
Repository. Since MVN does not consider dependencies inherited from parent libraries,

123

Page 15 of 25 83

Empirical Software Engineering (2024) 29:83

Table 3 The average (mean) number of vulnerabilities that are associated with each dependency scope/type
in all the versions of the 200 analyzed libraries

Dependency scopes with an immediate negative impact are shown in Bold font, and those that may or may not
have an impact (i.e., optional) are shown in Italics. Even though OSI does not distinguish dependency types,
we use dashed lines to show the distribution of transitive dependencies for comparison purposes

MVN only shows an average of 5.19 vulnerabilities for direct dependencies as opposed to
5.39 as shown by OSI and VulNet. Moreover, MVN excludes an average of 21.18 potential
vulnerabilities from non-test transitive dependencies as it does not consider any transitive
dependency. In short, MVN does not show most of the potential vulnerabilities. OSI, on
the other hand, lists an average of 5.39 and 5.93 vulnerabilities from direct and transitive
dependencies, respectively. However, as we found and shown in VulNet, an average of 0.86
and 2.18 vulnerabilities are related to direct and transitive test dependencies. In other words,
27% (average number of vulnerabilities from test dependencies divided by the total number
of vulnerabilities) of the vulnerabilities in a library are from test dependencies, which often
do not affect the final produced binary. Such a high percentage of invalid vulnerabilities may
affect developers’ trust and adoption of vulnerability management tools (Imtiaz et al. 2021;
Barik 2016; Lipp et al. 2022).

Currently, both MVN and OSI lack details when categorizing vulnerabilities in library
dependencies. Thus, when developers resort to leveraging these platforms, they may not be
informed of the most probable vulnerabilities. In contrast, VulNet categorizes the depen-
dency based on the scope (e.g., test vs non-test and optional vs required), which may help
developers get a more informed list of vulnerabilities based on the nature of the associated
dependencies. When developers examine the result provided by VulNet, they can decide
which vulnerabilities in a dependency are more likely to cause risks and should be resolved
(e.g., by upgrading or by replacing the dependency).

90.5% and 65.8% of the dependencies are not covered by MVN and OSI, respectively,
when listing dependencies. At the same time, vulnerabilities from the ignored depen-
dencies cannot be enumerated. Categorizing dependencies based on the types may help
reduce 27% of the invalid (or less impactful) vulnerabilities listed by OSI (such as those
from test dependencies).

123

83 Page 16 of 25

Empirical Software Engineering (2024) 29:83

RQ2: How are theVulnerable Dependencies andVulnerabilities Distributed Across
Different Dependency Depths?

Motivation VulNet ranks the dependencies based on the dependency depth and the severity
score of the vulnerabilities. In this RQ,we conduct a quantitative study to provide an overview
of the prioritization approach. We study the average number of dependencies, the average
number of vulnerable dependencies and the average number of vulnerabilities introduced by
dependencies at different depths.We also calculated the distribution of themean vulnerability
severity score at different depths. We wish to provide insights into how the management of
vulnerabilities associated with a library’s dependencies can be prioritized. Especially, when
the number of vulnerable dependencies is large, the prioritization of vulnerability mitigation
that matters the most to developers can improve the productivity for the stakeholders.
Approach Similar to RQ1, we conduct our study on all the versions of the top 200 libraries
on the Maven repository (collected the data in November 2021). We analyze the depth of
required non-test dependencies and the depth of transitive optional non-test dependencies
for all the libraries. As we discussed in Section 3, lacking the prioritization of vulnerable
dependency may prevent developers from effectively using a library due to the effort to
filter out those vulnerabilities without a concrete impact. Therefore, in this RQ, we first
analyze the distribution of the depth of dependencies, the depth of vulnerable dependencies,
and the number of associated vulnerabilities. Then, we analyze the mean severity score for
vulnerabilities at different depths.

Results. In General, the Mean Number of Vulnerable Dependencies and the Mean
Number of Vulnerabilities Decrease as the Dependency Depth Increases Table 4 shows the
mean number of dependencies, vulnerable dependencies, vulnerabilities, and severity score
for our analyzed libraries. We grouped the results based on different dependency depths and
types (i.e., required and optional). We exclude test dependencies in the results since they are
excluded (by default) in the final binary executables. Note that when the depth value is one,
it represents a direct dependency.

We find that, as the dependency depth increases, the average number of vulnerable depen-
dencies and vulnerabilities decreases. The trend is the same for both required and optional
dependencies. When the depth is one, there are 2.76 vulnerable dependencies with 5.53 vul-

Table 4 The average (mean) number of dependencies, vulnerable dependencies, vulnerabilities, and severity
score per depth level

Dependency
type

Depth Num. depen-
dency

Num. vulnerable
dependency

Num. vulnera-
bility

Vulnerability
severity score

Required 1 6.20 2.76 5.53 7.70

2 9.68 1.95 4.01 7.02

3 7.14 1.71 2.73 7.40

4 4.51 1.66 2.11 7.25

5+ 7.70 2.55 3.90 7.32

Optional 2 24.59 4.99 6.10 7.90

3 32.94 4.08 2.72 7.45

4 33.56 3.28 3.73 8.18

5+ 78.05 6.13 5.31 7.73

Note that we exclude test dependencies in the result

123

Page 17 of 25 83

Empirical Software Engineering (2024) 29:83

nerabilities (for required dependencies), while there are only 1.95 vulnerable dependencies
and 4.01 vulnerabilities when the depth increases to two.

Overall, Vulnerabilities Associated with Direct Dependencies Have a Higher Average
Severity Score Compared to Transitive Dependencies Vulnerabilities may cause different
consequences due to different severity levels. Therefore, vulnerabilities with a higher severity
score should often be investigated and resolved first (Le et al. 2022). Based on our findings,
we find that vulnerabilities in direct required dependencies have a higher average severity
score (7.70) compared to transitive required dependencies (severity scores range from 7.02 to
7.40). In otherwords, in the analyzed libraries, vulnerabilities in direct dependencies aremore
likely to cause severe consequences. For optional dependencies, the severity score for the
vulnerabilities with depth two is 7.90, which is the second highest among all the depth levels.
However, since optional dependencies are only enabled if developers require the optional
features, their impact may be more manageable and may only be concerned by developers
who actually use the specific features in such dependencies.

Our findings show that vulnerable direct dependencies often have more vulnerabilities
with higher severity scores. Such vulnerabilities may be easier to investigate due to direct
usage. Hence, resolving vulnerable direct dependencies might be more efficient, while
developers should not neglect potentially vulnerable transitive dependencies based on
their concrete use scenarios for such dependencies.

RQ3:What are Practitioners’ Feedbacks onVulNet?

Motivation In the previous RQs, we conducted empirical studies on how the dependencies
and vulnerabilities are organized based on the features we proposed in VulNet. Nevertheless,
to assess the usefulness of VulNet, it is important to understand practitioners’ perceptions on
VulNet, the limitations of the existing vulnerability management platforms, and the extent
to which VulNet addresses them.
Approach To receive feedback from practitioners, we conducted a survey involving 24
participants (8 professional developers and 16 related field researchers such as graduate
students, postdoctoral fellows and professors). These participants have two to twenty years
(average of 6.65) of experience in Maven for Java development or testing. The participants
were asked to provide a numerical rating on a 5-point scale (i.e., “Strongly agree”, “Agree”,
“Neutral”, “Disagree”, and “Strongly disagree”, where 5 refers to “Strongly agree”) on how
each one of MVN, OSI, and VulNet present vulnerability information.

The survey is composed of three parts: 1) background information (i.e., years of experi-
ence in software development); 2) practitioners’ perspectives on how the three platforms
present dependencies and vulnerabilities; and 3) practitioners’ perspectives on how the
three platforms prioritize vulnerabilities. For part 2 and part 3, we first show how each
platform presents the information using both screenshots and live web pages. Then, we
ask the participants to rate each platform. Finally, we ask the participants to rate the use-
fulness of the features that we proposed in VulNet: grouping the dependencies based on
scope, grouping the vulnerabilities based on the dependency that they belong to, and prior-
itization based on dependency depth and severity scores. Note that, for each question, we
also ask if participants have further comments or ideas regarding dependency vulnerability
management.

123

83 Page 18 of 25

Empirical Software Engineering (2024) 29:83

Results. Developers Opine that VulNet Offers more Informed Vulnerability Management
and Helps Better Prioritize Vulnerability Mitigation Efforts, with an Average Rating of
4.50, Compared to MVN (2.83) and OSI (3.14) Table 5 shows the ratings on the three
platforms with respect to vulnerability listing and prioritization from the participants who
are experienced in software development, with an average experience of 6.65 years.

Overall,VulNet received amuchhigher average rating (4.50) compared toMVN(2.83) and
OSI (3.14). In both vulnerability listing and prioritization, VulNet received an average rating
of 4.38 and 4.58, and all the participants either agree or strongly agree that VulNet provides
useful information. Our findings show that the participants acknowledge and appreciate the
information that VulNet provides over MVN and OSI.
Practitioners Gave VulNet a Rating of 4.43 and 4.42 on Grouping the Vulnerability by
Dependency Scope and Listing the Vulnerabilities that are Associated with each Depen-
dency

Grouping dependencies by scope helps developers better prioritize their efforts toward
in-scope vulnerabilities, which is rated (4.43) by participants. One participant mentioned: “If
the vulnerability is from a test dependency, I may ignore it.” Another participant mentioned:
“The reason for grouping is helping make correlations and building better dependencies.”
Additionally, participants gave a rating of 4.42 on VulNet’s feature of listing the vulnerability
of every single dependency. One participant mentioned: “Listing every single vulnerability
correlated with dependencies creates a better picture and may be used in the future when new
vulnerabilities are discovered. In my opinion, this is as important as doing regression testing
whenever a new feature is added to a software component.” In short, the participants agree
that providing the number of vulnerabilities from each dependency helps them prioritize and
understand the overall quality of the software better.
Practitioners Gave VulNet a Rating of 4.35 on Prioritizing Transitive Dependencies Based
on Dependency Depth, and a Rating of 4.87 on Ranking the Vulnerable Dependencies
Based on Severity Scores VulNet provides the dependency depth information to help devel-
opers understand where the vulnerable dependencies are located in the dependency graph.
Such information allows developers to know which vulnerable dependencies are more likely
to have an impact on the library. One participant mentioned: “ I will be interested in the com-
plete vulnerabilities that may affect my application. In the second step, I will go through the
vulnerabilities of each dependency.” Additionally, VulNet shows the vulnerability impact for
a dependency (i.e., the number of associated vulnerabilities and their severity scores). This
may help developers prioritize the mitigation effort when resolving the issue by replacing or
upgrading the dependency. One participant mentioned: “I think developers care more about
the severity and the rank of severity.”

VulNet received a higher rating (4.50) than either MVN (2.83) or OSI (3.14), both
overall and from every aspect. The participants also gave positive feedback on VulNet’s
vulnerability prioritization approachbasedondependencydepth andvulnerability impact
(with an average rating of 4.35 and 4.87, respectively).

Table 5 The average rating (from
a scale of 1 to 5, where 5 is
strongly agree) on how each of
the three platforms present
vulnerability listing and
prioritization

MVN OSI VulNet

Vulnerability listing 3.17 3.04 4.38

Vulnerability prioritization 2.50 3.23 4.58

Overall average 2.83 3.14 4.50

123

Page 19 of 25 83

Empirical Software Engineering (2024) 29:83

6 Discussion and Implications

We discuss the implications of our study for practitioners and researchers, respectively.
Implication for Practitioners In this paper, we show the limitations of the state-of-the-art

platforms: MVN, and OSI. We also find that practitioners using these platforms may not be
able to get complete and precise vulnerability information.

Hence, practitioners who use these platforms in the future may refer to our study to know
their limitations. We also present VulNet, which provides a better approach to organizing and
presenting the vulnerability information. Practitioners may leverage VulNet in the future to
manage and understand the vulnerabilities in the used dependencies.

Implication forResearchersVarious limitations of the state-of-the-art vulnerabilityman-
agement platforms fuel the need for better vulnerability management, not just for Java but
for other programming languages (C/C++) as well. Due to the complexity of the software
dependency graph, some dependencies may be bloated or the vulnerable code may not be
used by parent libraries (Gkortzis et al. 2019). Future research may study the effectiveness of
a finer-grained analysis, i.e., at the class/method/statement level to localize and understand
the actual impact (reachability) of vulnerabilities.

Our research is based on theMaven ecosystem for the Java programming language and the
associated ecosystem. Future studies may further investigate how vulnerability management
is done in different ecosystems (e.g., NPM) and whether there are any similar or different
challenges. Finally, one participant in the survey mentioned that “‘vulnerabilities from deep
dependencies may have a lower impact’ is not always true. Some deep dependencies may also
be used frequently and affect libraries.” Future studies may leverage the findings in our study
and conduct a vulnerability impact analysis at a finer-grained level (e.g., class or method)
and evaluate the true impact of dependencies with different dependency depth levels.

7 Threats to Validity

This section discusses the limitations and potential threats to the validity of our experimental
observations.
External Validity Our observations and study are based on the top 200 Java projects (con-
ducted in November 2021) built by Maven Repository and our findings are restricted to this
scope.

We selected the top 200 popular libraries and, all their versions (19,886 versions in total)
as a starting point. Then, we recursively collect and analyze all of the transitive dependencies
(and the transitive dependencies of all the associated dependencies) that are available (a total
of 274,236 libraries and 623,620 versions). For libraries that are less utilized by the open-
source community, theymight not be included in our dataset. However, VulNet is constructed
to be easily extendable to all varieties of libraries, regardless of their usage frequency. We
released our code and dataset which could help future research to extend the study and verify
on more libraries. Our findings may not generalize to other dependency management sys-
tems (e.g., Snyk (Snyk 2022) and Libraries.io (Libraries.io 2022)). To mitigate this threat to
some extent, we compared the vulnerability information for some known vulnerable libraries
across MVN, OSI, OSSIndex, Snyk, and Libraries.io. We observed that OSSIndex excludes
vulnerabilities from dependencies and only focuses on vulnerabilities from the library itself.
Libraries.io (although covering a total of 32 package managers) fails to list any vulnerability
information. In the presence of multiple vulnerabilities, Snyk lists vulnerabilities in no par-
ticular order (no prioritization), while VulNet provides prioritization of the vulnerabilities

123

83 Page 20 of 25

Empirical Software Engineering (2024) 29:83

in a library’s dependencies. There are more systems that provide dependency management
in practice. In this paper, we focus only on two of these platforms (MVN and OSI). More
insights to improve software dependency and its associated vulnerability management can be
found by studying other systems in the future. We believe that further studies along this line
of comparison could support the enrichment offered by VulNet. Another external validity is
related to the evolving nature of vulnerability data and the analyzed platforms. The features
and data on MVN and OSI may change over time due to new development, feature addition,
and newly discovered vulnerabilities and reported CVEs. However, the implications of our
findings and developed solutions should remain unchanged.
Construct Validity We conducted empirical studies on how state-of-the-art platforms list
vulnerable dependencies. We discuss the limitations and differences between the two plat-
forms. Our analysis may be subjective and others may have different opinions on the issues
we found. While providing user feedback on VulNet, the participants may have biases from
prior experiences of using MVN or OSI. However, our survey shows that the participants
highly agree with our findings and the approach we proposed in VulNet.

8 Conclusions

In this paper, we performed an empirical study on two state-of-the-art vulnerability manage-
ment platforms (MVN and OSI), and identified their lack of prioritization of vulnerability
information provided to developers, categorization of different kinds of dependencies, and
overestimation or underestimation of the number of dependencies and their associated vulner-
abilities. To address these limitations, we introduced VulNet. The motivation was to furnish
more effective information so that it helps prioritize relevant vulnerability information and
guide developers’ mitigation efforts towards several downstream software quality manage-
ment tasks, such as library migration, vulnerability localization and removal. We validated
the usefulness of VulNet using a user study that involved a comparison with MVN, and OSI.
Overall, VulNet was highly appreciated and rated by the practitioners and they opine that it
offers more effective vulnerability management capability.

Data Availibility The datasets generated during and analyzed during the current study are available in the
VulNet repository, https://github.com/SPEAR-SE/Vulnet.

Declarations

Conflict of Interest The authors declared that they have no conflict of interest.

References

AlfadelM,CostaDE,MokhallalatiM,ShihabE,AdamsB (2020)On the threat of npmvulnerable dependencies
in Node.js applications

Alfadel M, Costa DE, Shihab E (2021) Empirical analysis of security vulnerabilities in Python packages. In:
Proceedings of the 28th IEEE international conference on software analysis, evolution and reengineering
(SANER’21)

Aloraini B (2020) Towards better static analysis security testing methodologies. PhD thesis: https://uwspace.
uwaterloo.ca/handle/10012/16359. Accessed 8 Aug 2022

Alqahtani SS, Eghan EE, Rilling J (2016) SV-AF - a security vulnerability analysis framework. In: 2016 IEEE
27th international symposium on software reliability engineering (ISSRE). pp 219–229

Apache (2022a) Log4j - apache log4j 2. https://logging.apache.org/log4j/2.x/. Accessed 24 Nov 2022
Apache (2022b) Maven - introduction to the dependency mechanism. https://maven.apache.org/guides/

introduction/introduction-to-dependency-mechanism.html#dependency-scope. Accessed 17 Aug 2022

123

Page 21 of 25 83

https://github.com/SPEAR-SE/Vulnet
https://uwspace.uwaterloo.ca/handle/10012/16359
https://uwspace.uwaterloo.ca/handle/10012/16359
https://logging.apache.org/log4j/2.x/
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#dependency-scope
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#dependency-scope

Empirical Software Engineering (2024) 29:83

Apache (2022c) Maven-Maven documentation. https://maven.apache.org/guides/. Accessed 23 Aug 2022
Barik T (2016) How should static analysis tools explain anomalies to developers? In: Proceedings of the 2016

24th ACM SIGSOFT international symposium on foundations of software engineering, FSE 2016. pp
1118–1120

Chen TH, Shang W, Hassan AE, Nasser M, Flora P (2016) Detecting problems in the database access code of
large scale systems: an industrial experience report. In: Proceedings of the 38th international conference
on software engineering companion, ICSE’16. pp 71–80

Croft R, Xie Y, Zahedi M, Babar MA, Treude C (2021) An empirical study of developers’ discussions about
security challenges of different programming languages. arXiv:2107.13723

Decan A, Mens T (2019) What do package dependencies tell us about semantic versioning? IEEE Trans
Software Eng 47(6):1226–1240

Decan A, Mens T, Claes M (2016) On the topology of package dependency networks: a comparison of
three programming language ecosystems. In: Proccedings of the 10th European conference on software
architecture workshops, ECSAW’16

Decan A, Mens T, Constantinou E (2018) On the impact of security vulnerabilities in the Npm package depen-
dency network. In: Proceedings of the 15th international conference on mining software repositories,
MSR’18. pp 181–191

Düsing, J. and Hermann B (2022) Analyzing the direct and transitive impact of vulnerabilities onto different
artifact repositories. Digital Threats 3(4)

Epperson W, Wang A, DeLIne R, Drucker S (2022) Strategies for reuse and sharing among data scientists in
software teams. In: ICSE 2022

Falessi D, Cantone G, Kazman R, Kruchten P (2011) Decision-making techniques for software architecture
design: a comparative survey. ACM Comput Surv 43:33

Farris KA, Shah A, Cybenko G, Ganesan R, Jajodia S (2018) VULCON: a system for vulnerability prioritiza-
tion, mitigation, and management. ACM Trans Priv Secur 21(4)

First (2022) Common vulnerability scoring system SIG. https://www.first.org/cvss/. Accessed 26 Aug 2022
FrakesW, Kang K (2005) Software reuse research: status and future. IEEE Trans Software Eng 31(7):529–536
GitHub (2020) github-octoverse-2020-security-report. https://octoverse.github.com/2020/
Gkortzis A, Feitosa D, Spinellis D (2019) A double-edged sword? software reuse and potential security

vulnerabilities. In: Peng X, Ampatzoglou A, Bhowmik T (eds) Reuse in the big data era. pp 187–203
GkortzisA, FeitosaD,SpinellisD (2021)Software reuse cuts bothways: an empirical analysis of its relationship

with security vulnerabilities. J Syst Softw 172:110653
Google (2022a) Google online security blog: Understanding the impact of apache log4j vulnerability. https://

security.googleblog.com/2021/12/understanding-impact-of-apache-log4j.html. Accessed 24 Nov 2022
Google (2022b) Open source insights. https://deps.dev/. Accessed 05 Aug 2022
Google (2022c) Open source insights. https://deps.dev/faq. Accessed 12 Oct 2022
Harrand N, Benelallam A, Soto-Valero C, Bettega D, Barais O, Baudry B (2020) API beauty is in the eye

of the clients: 2.2 million Maven dependencies reveal the spectrum of client-API usages. J Syst Softw
184:111134

Huang CC, Lin FY, Lin FYS, SunYS (2013) A novel approach to evaluate software vulnerability prioritization.
J Syst Softw 86(11):2822–2840

Imtiaz N, Thorn S, Williams L (2021) A comparative study of vulnerability reporting by software composition
analysis tools. In: Proceedings of the 15th ACM / IEEE international symposium on empirical software
engineering and measurement (ESEM), ESEM’21

JohnsonB, SongY,Murphy-Hill E, BowdidgeR (2013)Why don’t software developers use static analysis tools
to find bugs? In: Proceedings of the 2013 international conference on software engineering, ICSE’13. pp
672–681

Jung B, Li Y, Bechor T (2022) CAVP: a context-aware vulnerability prioritization model. Comput Secur
116:102639

Kula R, German D, Ouni A, Ishio T, Inoue K (2018) Do developers update their library dependencies? Empir
Softw Eng 23:1–34

Latendresse J, Mujahid S, Costa DE, Shihab E (2022) Not all dependencies are equal: an empirical study on
production dependencies in NPM

LaToza TD, Myers BA (2010) Developers ask reachability questions. In: Proceedings of the 32nd ACM/IEEE
international conference on software engineering, vol 1, ICSE’10. pp 185–194

Le THM, Chen H, Babar MA (2022) A survey on data-driven software vulnerability assessment and prioriti-
zation. ACM Comput Surv

Lemos R (2022) Dependency problems increase for open source components. https://www.darkreading.com/
application-security/dependency-problems-increase-for-open-source-components. Accessed 05 Aug
2022

123

83 Page 22 of 25

https://maven.apache.org/guides/
http://arxiv.org/abs/2107.13723
https://www.first.org/cvss/
https://octoverse.github.com/2020/
https://security.googleblog.com/2021/12/understanding-impact-of-apache-log4j.html
https://security.googleblog.com/2021/12/understanding-impact-of-apache-log4j.html
https://deps.dev/
https://deps.dev/faq
https://www.darkreading.com/application-security/dependency-problems-increase-for-open-source-components
https://www.darkreading.com/application-security/dependency-problems-increase-for-open-source-components

Empirical Software Engineering (2024) 29:83

Libraries.io (2022) Libraries.io-The open source discovery service. https://libraries.io/. Accessed 14Nov 2022
Lipp S, Banescu S, Pretschner A (2022) An empirical study on the effectiveness of static C code analyzers for

vulnerability detection. In: Proceedings of the 31st ACMSIGSOFT international symposium on software
testing and analysis, ISSTA 2022. pp 544–555

Liu C, Chen S, Fan L, Chen B, Liu Y, Peng X (2022) Demystifying the vulnerability propagation and its
evolution via dependency trees in theNPMecosystem. In: 2022 IEEE/ACM44th international conference
on software engineering (ICSE). pp 672–684

Liu Q, Zhang Y, Kong Y, Wu Q (2012) Improving VRSS-based vulnerability prioritization using analytic
hierarchy process. J Syst Softw 85(8):1699–1708

Louridas P, Spinellis D, Vlachos V (2008) Power laws in software. ACM Trans Softw Eng Methodol 18(1)
Ma Z, Mondal S, Chen THP, Zhang H (2022) Vulnet. https://github.com/SPEAR-SE/Vulnet
Massacci F, Pashchenko I (2021) Technical leverage in a software ecosystem: development opportunities and

security risks. In: 2021 IEEE/ACM 43rd international conference on software engineering (ICSE). pp
1386–1397

Maven (2022) Maven-optional dependencies and dependency exclusions. Accessed 17 Aug 2022
Mitre (2022) Cve-cve-2021-44228. https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2021-44228.

Accessed 17 Nov 2022
Mojica IJ, Adams B, Nagappan M, Dienst S, Berger T, Hassan AE (2014) A large-scale empirical study on

software reuse in mobile apps. IEEE Softw 31(2):78–86
Nachtigall M, Schlichtig M, Bodden E (2022) A large-scale study of usability criteria addressed by static

analysis tools. In: Proceedings of the 31st ACM SIGSOFT international symposium on software testing
and analysis, ISSTA 2022. pp 532–543

Oracle (2022) JDBC drivers | oracle. https://www.oracle.com/ca-en/database/technologies/appdev/jdbc.html.
Accessed 12 Oct 2022

Pashchenko I, Plate H, Ponta SE, Sabetta A,Massacci F (2018)Vulnerable open source dependencies: counting
those that matter. Proceedings of the 12th ACM/IEEE international symposium on empirical software
engineering and measurement

Pashchenko I, Plate H, Ponta S, Sabetta A, Massacci F (2020) Vuln4Real: a methodology for counting actually
vulnerable dependencies. IEEE Trans Softw Eng 48(01):1–1

Prana G, Sharma A, Shar LK, Foo D, Santosa A, Sharma A, Lo D (2021) Out of sight, out of mind? How
vulnerable dependencies affect open-source projects. Empirical Software Engineering 26

Renjin (2022) Renjin | Integrating R and Java | The JVM-based interpreter for the R language for statistical
computing. https://www.renjin.org/. Accessed 08 Sep 2022

Repository M (2022a) Maven Repository: Search/Browse/Explore. https://mvnrepository.com/. Accessed 05
Aug 2022

RepositoryM (2022b)Maven repository: top projects atMaven repository. https://mvnrepository.com/popular.
Accessed 06 Aug 2022

Ruiz IJM, Nagappan M, Adams B, Hassan AE (2012) Understanding reuse in the Android Market. In: 2012
20th IEEE international conference on program comprehension (ICPC). pp 113–122

Saaty TL (1994) Fundamentals of decision making and priority theory with the analytic hierarchy process.
RWS publications

Shen H, Fang J, Zhao J (2011) EFindBugs: effective error ranking for FindBugs. In: 2011 Fourth IEEE
international conference on software testing, verification and validation. pp 299–308

Smith J, Johnson B, Murphy-Hill E, Chu B, Lipford HR (2015) Questions developers ask while diagnosing
potential security vulnerabilities with static analysis. In: Proceedings of the 2015 10th joint meeting on
foundations of software engineering, ESEC/FSE 2015. New York USA, pp 248–259

Snyk (2022) Snyk vulnerability database | Snyk. https://security.snyk.io/. Accessed 14 Nov 2022
Sonatype (2022) Sonatype oss index. https://ossindex.sonatype.org/. Accessed 08 Mar 2023
Soto-Valero C, Harrand N, Monperrus M, Baudry B (2021) A comprehensive study of bloated dependencies

in the Maven ecosystem. Empirical Softw Engg 26(3)
Synopsys (2022). Synopsys | EDA tools, semiconductor IP and application security solutions. https://www.

synopsys.com/. Accessed 05 Aug 2022
Valiev M, Vasilescu B, Herbsleb J (2018) Ecosystem-level determinants of sustained activity in open-source

projects: a case study of the PyPI ecosystem. In: Proceedings of the 2018 26th ACM joint meeting on
european software engineering conference and symposium on the foundations of software engineering,
ESEC/FSE 2018. pp 644–655

Zerouali A, Mens T, Decan A, De Roover C (2022) On the impact of security vulnerabilities in the NPM and
RubyGems dependency networks. Empir Softw Eng 27(5):1–45

123

Page 23 of 25 83

https://libraries.io/
https://github.com/SPEAR-SE/Vulnet
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2021-44228
https://www.oracle.com/ca-en/database/technologies/appdev/jdbc.html
https://www.renjin.org/
https://mvnrepository.com/
https://mvnrepository.com/popular
https://security.snyk.io/
https://ossindex.sonatype.org/
https://www.synopsys.com/
https://www.synopsys.com/

Empirical Software Engineering (2024) 29:83

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Zeyang Ma received a bachelor’s degree in Computer Science (Sino-
French cooperation program) from Shanghai Normal University in
2021. He then enrolled at Concordia University to begin his MSc
in Computer Science. He fast-tracked to the PhD program in 2023.
Currently, he is a Ph.D. student in the Department of Computer Sci-
ence and Software Engineering at Concordia University, Montreal,
Canada. His research focuses on Software Engineering, Mining Soft-
ware Repositories, and Software Maintenance. More information at:
https://zeyang919.github.io/.

Shouvick Mondal leads the Software Engineering and Testing Lab. at
the Indian Institute of Technology Gandhinagar (IITGN). His research
activities focus on the improvement of existing and the development
of new scalable and performant software analysis methodologies to
ensure construction of high-quality and trustworthy software systems.
His work has been published and presented in conferences and jour-
nals such as ASE, ICSME, ICST, JSS, and TSE. He regularly serves
as a Program Committee member in the Artifact Evaluation track of
conferences such as ISSTA, and PPoPP. He also serves as a journal
reviewer for TSE, JSS, and IST. More information at: https://sites.
google.com/view/shouvick.

Tse-Hsun (Peter) Chen is an Associate Professor in the Department of
Computer Science and Software Engineering at Concordia University,
Montreal, Canada. He leads the Software PErformance, Analysis, and
Reliability (SPEAR) Lab, which focuses on conducting research on
performance engineering, program analysis, log analysis, production
debugging, and mining software repositories. Besides his academic
career, Dr. Chen also worked as a software performance engineer at
BlackBerry for over four years and served as a research consultant at
Ericsson for almost two years. His work has received several pres-
tigious awards and has been published in flagship conferences and
journals such as ICSE, FSE, ASE, TSE, and TOSEM. He serves regu-
larly as a program committee member of international conferences in
the field of software engineering, such as ICSE, FSE, ASE, ICSME,
SANER, and MSR, and he is a regular reviewer for software engineer-
ing journals such as EMSE and TSE. Dr. Chen obtained his BSc from
the University of British Columbia, and MSc and PhD from Queen’s

University. Early tools developed by Dr. Chen were integrated into industrial practice for ensuring the quality
of large-scale enterprise systems. More information at: http://petertsehsun.github.io/.

123

83 Page 24 of 25

https://zeyang919.github.io/
https://sites.google.com/view/shouvick
https://sites.google.com/view/shouvick
http://petertsehsun.github.io/

Empirical Software Engineering (2024) 29:83

Haoxiang Zhang is a research fellow at the Software Analysis and
Intelligence Lab (SAIL), Queen’s University, Canada. His research
interests include empirical software engineering, mining software
repositories, and intelligent software analytics. He received a PhD
in Computer Science from Queen’s University, Canada. He received
a PhD in Physics and MSc in Electrical Engineering from Lehigh
University, and obtained his BSc in Physics from the University of
Science and Technology of China. Contact haoxiang.zhang@acm.org.
More information at: https://haoxianghz.gitlab.io/homepage/.

Ahmed E. Hassan is an IEEE Fellow, an ACM SIGSOFT Influen-
tial Educator, an NSERC Steacie Fellow, the Canada Research Chair
(CRC) in Software Analytics, and the NSERC/BlackBerry Software
Engineering Chair at the School of Computing at Queen’s Univer-
sity, Canada. His research interests include mining software reposito-
ries, empirical software engineering, load testing, and log mining. He
received a PhD in Computer Science from the University of Water-
loo. He spearheaded the creation of the Mining Software Repositories
(MSR) conference and its research community. He also serves on
the editorial boards of IEEE Transactions on Software Engineering,
Springer Journal of Empirical Software Engineering, and PeerJ Com-
puter Science. More information at: http://sail.cs.queensu.ca.

Authors and Affiliations

Zeyang Ma1 · Shouvick Mondal2 · Tse-Hsun (Peter) Chen1 · Haoxiang Zhang3 ·
Ahmed E. Hassan3

Shouvick Mondal
shouvick.mondal@iitgn.ac.in

Tse-Hsun (Peter) Chen
peterc@encs.concordia.ca

Haoxiang Zhang
haoxiang.zhang@acm.org

Ahmed E. Hassan
ahmed@cs.queensu.ca

1 The Software Performance, Analysis, and Reliability (SPEAR) lab, Concordia University,
Montreal, Canada

2 Computer Science and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
3 Software Analysis and Intelligence Lab (SAIL), Queen’s University, Kingston, ON, Canada

123

Page 25 of 25 83

https://haoxianghz.gitlab.io/homepage/
http://sail.cs.queensu.ca
http://orcid.org/0000-0002-0390-1547

	VulNet: Towards improving vulnerability management in the Maven ecosystem
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 The Maven Ecosystem and Vulnerability Management
	2.2 Challenges in Presenting Vulnerability Information
	2.3 Related Work

	3 An Empirical Study on Vulnerability Management in the Java Ecosystem
	3.1 Studying Vulnerability Management in MVN and OSI
	3.2 Limitations of Current Vulnerability Management Platforms

	4 VulNet: A More Informed Vulnerability Management for the Java Ecosystem
	4.1 REQ1: Categorizing the Dependencies Based on their Properties and Scopes
	4.2 REQ2: Providing Mechanisms to Help Developers Prioritize Vulnerable Dependencies

	5 Evaluation of VulNet
	RQ1: How Does the Dependency Categorization Provided by VulNet Compare Against State-of-the-Art Vulnerability Management Platforms?
	RQ2: How are the Vulnerable Dependencies and Vulnerabilities Distributed Across Different Dependency Depths?
	RQ3: What are Practitioners' Feedbacks on VulNet?

	6 Discussion and Implications
	7 Threats to Validity
	8 Conclusions
	References

